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ABSTRACT 

Cross sections and kinematic distributions for the trident 

production p rocess ji + Z -» pi + e + e + Z (with Z = p and Fe) 

a r e given for beam energies of 100-300 GeV at fixed (e e ) masse s 

from 5 to 15 GeV. This process is interesting as a test of quantum 

electrodynamics at high energies , and in par t icular as a test of the 

form of the photon propagator at large timelike (four-momentum) . 

For this purpose, it is desi rable to impose kinematic cuts that favor 

those Bethe-Heit ler graphs which contain a timelike photon propa­

gator. It is found that there are substantial differences between the 

kinematic distr ibutions for the full Bethe-Heitler matr ix element 

(which involves four graphs) and the distributions for the two t ime­

like-photon graphs alone; these differences can be exploited in the 

selection of appropr ia te kinematic cuts. The competing virtual 

Compton process (for Z = p) has been est imated on the basis of a 

simple model; its c r o s s section is at least two orders of magnitude 

smal le r than the Bethe-Heit ler c ross sections of interest , at the 

energies and (e e ) m a s s e s considered. 



I. INTRODUCTION 

In .his paper c ro s s sections and distr ibutions for the tr ident pro-

U * * Z - n ^ e" + e + + Z (1. 1) 

a r e calculated to lowest order of the conventional quantum electrodynamics 

for the cases of elastic scattering off a proton and coherent scat ter ing off 

a spin-C nucleus. This p rocess , as well as the essential ly identical 

react ion 

e* + Z - e ± + | j " + u
+ + Z (1.2) 

and the related process 

I + Z - l~ + i~ + i+ + z (1.3) 

(where i = n or e) are of interest because they a re sensit ive to possible 

modifications in lepton electrodynamics at high energ ies . In par t icular , 

we a re interested in facilitating the detection of possible deviation from 

conventional QED, especially in connection with the m a s s spectrum of the 

lepton pair produced in p rocesses (1. 1) or (1. 2). Such a deviation could 

be due, for example, to a modification of the photon propagator along the 

lines of the Lee-Wick "heavy photon pole" model . 

In the Lee-Wick theory, the possibility of replacing the conven­

tional photon field amplitude A by a complex amplitude A + 1BU , 

where iB is ant i -Hermit ian, is studied. Such a modification (coupled 

3 

with the introduction of a mass ive indef ini te-metr ic fermion field) yields 

finite resul t s for calculations of observable quanti t ies in hadron as well 

as lepton e lec t rodynamics . Total c ross sections for the resonant p rocess 

l*+ Z - f + Z ' + B° (1.4) 
'—• leptons or hadrons 

where t = u or e, and B is the mass ive indefini te-metr ic boson associated 

3 4 
with the amplitude B , have been given in previous papers ' (I). 

The Bethe-Hei t ler d iagrams for p roces s (1. 1), in which only one 

photon is exchanged with the nucleon or nucleus, a r e given in F ig . 1 

(for incident |a"). There a r e four such graphs , corresponding to the i n ­

terac t ion with the nucleon or nucleus Z occurr ing at any of the posi t ions 

(a)-(d). The competing virtual Compton graph i s indicated general ly in 

F ig . 2(a). The vir tual Compton c ro s s section f o r scat ter ing off pro tons 

is calculated in this paper using a s imple model of the hadronic i n t e r ­

action. It i s found to be two to four o rde r s of magnitude l e s s than the 

corresponding Bethe-Hei t ler c ross sect ions of in te res t . 

The main effect of the Lee-Wick (or s imi lar) modification upon 

p r o c e s s e s (1. 1) and (1. 2) is to enhance the singly-differential c r o s s 

section -r— in the vicinity of the B resonance, where v is the (mass) 
dv 

of the t imel ike vir tual photon. The enhancement of that pa r t of the c r o s s 

section which involves only d iagrams (a) and (b) of Fig. I (i. e. , the 

graphs which contain a t imelike photon propagator) , is given approxi-

1 , 2 4 . 2 2 2 
mate ly by the factor m M1** " v) > provided v is not ~ m . 
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Thus if m ~ 20 GeV, for example, an 80% enhancement should be 
B 

seen at . T = 10 GeV. 

However, if one measures ---- ' integrated over all kinematic con-
dv 

figurations consistent with fixed v), it will be seen that this enhancement 

effect will generally be nearly totally obscured by the much l a rger 

contribution from those diagrams [see Fig. 1, cases (c) and (d)] in 

all photon propagators are spacelike. The reason for this is simply 

that if no additional kinematic constraints are imposed, the spac 

photon joining leptonic vert ices in cases (c) and (d) of Fig. 1 can be 

much closer to the light cone than can the timelike photon in case 

and (b), for J v in the region of in teres t (^10 GeV). Consequently, 

we shall also be concerned with the kinematic distr ibutions for p r o ­

cesses (1. 1) and (1. 2), and with the types of kinematic cuts that can 

be made to increase the relative contribution of the timelike graphs . 

This information is useful as a guide for experimental sea rches for 

possible deviations of the timelike photon propagator from the p r e ­

dictions of conventional QF.D. The distributions a re obtained effi­

ciently by a binning procedure incorporated within a modified Monte 

Car lo integration scheme. 

In Section II, the mat r ix element (corresponding to the d iagrams 

of F ig . I) i s given for p roces s (1. 1) [or (1 . L) with the exchange JJ <—• e ] . 

Secfion HI differential c ross suction expressed in 

set of var iables . Section IV descr ibes the p 

numerical methods used. In Section V the 

Compton graphs is d iscussed. In Section VI the resu l t s a r e 

discussed. In Appendix A, express ions for the reiev. 

re lated quantity ived in t e rms of the var iables defi 

III. Appendix B - l imit of integrat i t 

scribr for incor; 

and 

i nd 

:ion 

tion scheme. 
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II. MATRIX ELEMENT 

A. Leptonic Part 

-it cor i to the four Bethe-Heit lcr dia­

ls = K V (2.1) 

T + S (2. 2) 

y»*\(-
l1- a X \ 

q • y Y + 2k ) 
0 ov 

f 2k J\} 
(2.3) 

' t imelike" diagrams (a) and (b) of Fig. 1, and 

3 „ - l 
D _ 1 "iTj,0 ^ c ' 1 ^ - ^ 2 k20 ) \ 

(2.4) 

is the contribution of the "spacel ike" diagrams (c) and (d). Here k, k , 

k,» k are the respective four-momenta of the incoming and outgoing u" 

7 

3 

-I 2 2 2 2 
and the e and e (see Fig. 1), satisfying k a k = -m and k = 

1 î 2 
-m j a n d q - p ' - p where p and p ' a r e the respect ive initial and 

2 2 2 
finM four-momenta of the nucleon or nucleus Z, with p = p ' = -M . 

The propagator denominators are 

v = - < V k / 

D = (k - k j ) 2 

2 
D = q - 2k-q 

a 

D b = q + Zkj.q 

D c = q + 2k2-q 

D d - q + 2k3«q . (2. 5) 

The spinors corresponding to the par t ic les of momentum k, k , and k , 

and to the ant ipar t ic le of momentum k , a re denoted u, u , u , and v 

respect ively; they a r e normalized so that uu = " . " . = 2m and u u -

— v - v , - 2 m . 3 3 e 

B. Hadronic P a r t 

The hadronic vertex and photon propagator q in Fig. 1 contribute the 

factor V . The V used here are identical to the corresponding factors of 
0* 0 

6 
paper I. Fo r elast ic scat ter ing otf a free proton, the dipole fit is suffi­

ciently accurate for our purposes: 



2, 2 , - 1 , F (q ) = G[l + K ( 1 + 4M /q ) 

2. 1 2 , , . , 2 , - 1 

where 

and 

Then 

K 2 , q > = 1°K(1 + 1 / 4 M ' ) " 

G = (1 + q 2 / 0 . 7 1 ) " 2 , q in GeV 

* = 1. 7928 . 

(2.6) 

(2.7) 

1 • r. w - 1 
V U e / q ) U p , [ F l y o • - i F 2 M " ( v ^ . v ^ , , ^ , , 2 . 8 ) 

w h e r e u and u , are the init ial 
P P 

u u = u ,u , = 2M. 
P P P P 

and f i n a l - s t a t e proton s p i n o r s , sat i s fy ing 

For coherent s c a t t e r i n g off a spjn-0 nuc leus of c h a r g e Z, we ha 

v = ( e Z / q ) ( p + p ' ) F(q 2 ) . 
(Z.9) 

We a s s u m e for the n u c l e u s a Fermi charge d i s t r ibut ion in the B r e i t f r a m e 7 

P F W « [ 1 + exp [ ( r - r Q ) / c ] ] " ' 

( q 0 - 0) 

with 

1/3 
(1 . 1 3 A " ' - 0 .48) f ermi , c = 0. 55 f e r m i , 0 

(2.10) 

( 2 . 1 1 ) 

9 

and 0_ n o r m a l i z e d such that I - (r)d r = 1. T h e f o r m factor i s g i v e n 
F F 

by ( s e e paper 1) 

F(q 2 ) = [ jaF(r)e'q' ""d^r] 8 (0. 25 G e V 2 - q 2 ) (2 . 121 

i n t e g r a t e d in the B r e i t f r a m e , w h e r e 9(x) = 1 for x a 0 and 9(x) = 0 for 

a 
x < 0 . We have thus i m p o s e d the arb i t rary but c o n v e n i e n t cutoff 

q 2 £ 0. 25 G e V 2 . 

F o r each of the above c h o i c e s for V , w e def ine 
0 

f V v„ v . • (2- ID 

w h e r e £ ' d e n o t e s the a v e r a g e o v e r ini t ia l and s u m m a t i o n o v e r f inal 

s p i n s (if any). ^For any f o u r - v e c t o r a = (a, i a Q ) , w e def ine a ^ = 

-.* * 
(a , ia ), w h e r e * d e n o t e s c o m p l e x c o n j u g a t i o n . ] S i n c e H = H 

° O T T O 
and q H = 0 , w e m a y w r i t e 

a a T 

H = H, 16 

^ ^ ) ^ ( ^ T 4 ( P ' " ^ , 1 nu' 
T h u s , for e l a s t i c s c a t t e r i n g off p i o t o n s , we have 

H l = " 2 ( F 1 + 2 F
2 ) 2 

» 2 - h 2 M 2 - 2 2 ^ ) (2. I?) 



and for coherent sc.ittering off iron, 

10 

(2. 16) 

H2 = (2MZF)* 

11 

III. DIFFERENTIAL CROSS SECTION 

The differential c ross section for p roces s (1. 1), 

beam to be unpolarized, and summing over spins of final-: 

5 
c l e s , is given by 

3 . 3 3 3 
g d p ' d kj d k2 d k 3 

4 V M N l a b V k 1 0 k
2 0 k 3 0 

* *<4)<k-V'VVq)5V V 

where £ ' denotes the average over initial and summation over final 

lepton spins. To simplify the six-fold numerical 

cussed in Section IV), it will prove convenient to express d j in 

the following set of var iab les . We define 

Uj = k.q 

u 2 = 2(k - k j t -q 

u 3 = (k - kj) ' ( k , - k3) , 

0 , - azimuthal angle from an a rb i t r a ry axis io p ' about polar axis k 

in the lab frame (p = 0), $ . = azimuthal angle from p to k about polar 

axis k in the f rame k = q (called frame "A"), and £.,„ - azimuthal angle 

from k to k about polar axis q in the frame £ k\ i q* (called frame "B") . 



dt du 

2 
t 

J 
J 

du dci 

M 

4rra) 

0, Kq. (2. 14) implie 

(3.6> 

13 

L and p L p a re evaluated in invariant form, using Veltman's 
a o - T 

9 
symbolic manipulation p r o g r a m SC.HOONSCHIP to perform the 

tedious t race calculations. (It should be noted that the express ion 

for L is not needed in the case of coherent sca t ter ing, since H = 0. ) 
0" 0 * 

The result ing express ions for L and p L p a r e composed of dot 
a a T T 

products involving the four-vectors k, k , k , k , q, and p (the la t te r 

appears only in p L p ). These dot products a re given in Appendix 

fifnctibns yen var iables v,t, u , u , u , £ , and 0-,„- In 

:t that only k • p, k.,- p, and k -p 

depend upon £ nly k *p, k • p, k«k ? , k « k , k-k , and k • k 

itation time is enormously reduced 

factoring out tl id * _ dependence. 
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IV. PHASE SPACE INTEGRATION 

In this section the procedure used to integrate the differential 

c ro s s section over all variables (except v, the square of the invariant 

m a s s "of the electro;) pair) is described, and the lab var iables over 

which binning is performed a r e given. 

A. Choice of Integration Var iables 

The kinematic l imits for the variables defined thus far (i. e. , 

t, u , u , u , 0 , p , and 0 ) a re given in Appendix B. Two p r i m a r y 

advantages have been gained by introducing these var iab les , ra ther 

than attempting to integrate the differential c ross section in the lab 

frame. F i r s t , the fact that the integrand depends in a very simple 

way upon 0 and 0 enables a considerable reduction in computing 

t ime, as mentioned in the previous section. Second, if the in tegra­

tions were performed in the lab frame, special p rocedures would be 

required for choosing the points of evaluation in such a way as to take 

account of the re la t iv is t ic peaking of the integrand in the forward 

direction. This difficulty is eliminated by doing severa l of the in tegra ­

tions in the CM frames of selected subsets of pa r t i c l e s . (F rame "A" 

is the CM frame of k , k , and k ; frame " B " , of k and k . ) 

However, the integrand is still not sufficiently smooth in these 

var iables to perform a Monte Carlo integration of sufficient accuracy. 

This is because several of the propagator denominators can attain very 

15 

small values in ce r t a in kinematic regions . It should be noted that each of 

the denominators (D, D , D, , D , D, , and t) i s l inear in v, t, u , , u^, and 
a b e d 1 2 

u , and is independent of 0 and 0 [see Eq. (A. 15)]. This fact helps to 

make it convenient to t ransform to a new set of integrat ion var iab les , chosen 

so that the new integrand (including the Jacobian) i s modera te ly smooth in 

the new var iab les . This is of course equivalent to optimizing the placement 

of the points of evaluation of the integrand, to take account of rapid var ia t ions 

in the original integrand (resulting both from the propagator denominators 

and the hadronic form factors) . 

The following t ransformation has proved useful in this regard , although 

a somewhat different choice could also have been made: 

2 
f G(t') dt ' , for scat ter ing off protons 

t 

' [ I ' (0) - I ' ( t )] , for sca t ter ing off nucleus. 

2 1 

1 / D c \ 1 , / "2 + 2 " S \ 
(4. 1) 

where fi is given by Eq. (3. 5), 

I '(t) = <" F ( t ' ) 2 d t ' . 
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G is the dipole form factor [Eq. (2. 7)], and F is the Fermi form factor 

[Eq. (2. 12)]. In the case of coherent scattering, I' is tabulated as a function 

of t, and the conversion between t and I' is accomplished by interpolating in 

this (sufficiently dense) table.(See paper I and Ref. 7.) 

The rationale of the transformation (4. 1) is as follows. The Jacobian 

for the mapping t->x reduces the peaking at small t due to the hadronic 

interaction factor V . Next, 

dx3 = (2Uj - v) (DD b f du2 (4.2) 

results in the complete elimination of the D and D," factors in the cross 
b 

terms between diagram (b) and either of diagrams (c) and (d), in Fig. 1. 

The effect of this transformation upon the entire factor L H is more 
O T CTT 

complicated, but a reasonable smoothing of the integrand results. The 

u , — x transformation, whose Jacobian is given by 

V* 
d x 4 = rTDVfe d u 3 <4"3' 

similarly smooths (in part) the u variation due to D and D , . The denomi-
5 c d 

nators v and D require no special treatment, since |D I > v and we are 

interested in the case of large v. 

B. Numerical Method 

We obtain the singly-differential cross section da/dv, and its distri­

butions in lab energy, angle and related variables, by a modified Monte 

Carlo method. The six-dimensional integration region ( in the 

17 

variables x , <S _, and <a , with the outermost integration being 
l-*4 3B 1A 

x, and the innermost, 0, . ) is partitioned into 
1 1A 

6 

N = Ji N. (4.4) 
i= l l 

rectangular boxes, corresponding to N. equally-spaced intervals 

along the x. axis ( j= l -4 ) , N along 0 , and Nfc along 0 1 A . For each box 

in x x x x . - space , two points (x , x , x^, x^1 and ( x ^ x^. Xy X^JJ 

are chosen pseudo-randomly. The bulk of the evaluation of L and 
0*0 

p L p , w h i c h c o n s i s t s of s e v e r a l thousand o p e r a t i o n s , i s c a r r i e d out at 
a CJT T 

t h i s l e v e l of the i n t e g r a t i o n . T h i s i s p o s s i b l e b e c a u s e the r e l a t i v e l y 

s i m p l e d e p e n d e n c e upon 0 , and 0 c a n be f a c t o r e d out. 

At e a c h of the po ints c h o s e n above a l l e x p r e s s i o n s i n d e p e n d e n t of 

rt and 0 , . a r e c o m p u t e d . N p s e u d o - r a n d o m va lues of 0 a r e then 
333 1A 5 *& 

s e l e c t e d (one in e a c h of the 0̂  i n t e r v a l s ) . F o r e a c h JL v a l u e , k- k^, k^k^. 

k-k , and k • k a r e c a l c u l a t e d ( s e e Appendix A) , and a l l e x p r e s s i o n s 

independent of 0 a r e c o m p u t e d . F ina l ly , N , p s e u d o - r a n d o m v a l u e s of 

0 (one p e r in terva l ) a r e s e l e c t e d , the in tegrand i s c o m p u t e d at e a c h 

0 value., and the v a l u e s of q and (in the lab f r a m e ) of k i n e t i c e n e r g y 

T.i log (1 - c o s 8.) w h e r e 8. i s the ang l e m a d e with the f o r w a r d d i r e c ­

t ion, the t r a n s v e r s e m o m e n t u m k . = I k I s i n 6-» and the quantity Ak„ . = 
j.1 ' ' i II l 

jk| (1 - cos g.), each for i = 1, 2, 3, are computed. (See Appendix A for 

details of the T. and cos 9. computations.) The differential cross section 

for each point (i. e. , each simulated "event") is assigned to the appropriate 

one of a large number (s 10000) of internally-carried bins in each of 



16 

these var iables . At the end of the calculations h i s tograms a re generated 

in these var iables . Each histogram contains about 25 bins, which a re 

selected so that an approximately eqi:a; I — J 

falls within each bin. 

Because the vast majority of the integrand calculations a re done 

inside only four of the six integrations, the bulk of the cc 

is spent in the calculation of the bin assign 

integrand. For given values of v and in gy E, the ca l -

dc 2. 
culation of -— and its distribution ir* c riables 

dv 
given above, requires about a minute of com 

Since each set of x values is selected 1 

randomly, a stat ist ical ly unbiased estimate of th< 

integrations is given by the variance 

( a . d . ) 2 = ( Z N j N ^ N ^ ) " 2 z [ f (Xj_ . 

ntegrand of . summed over all points in x x x ^ x -space, where 1' 

the x ' integrations (already integrated over 0. and.M 

denotes the standard deviation. The total integral is given by the 

approximation 

I A ' 

d a 
j ; i (2N1N2N3K4,-1 TAKx^K • f ( x ^ 4 ) n ] . (4.6) 

For the resul ts presented. ( 8 .d . )/(«W«lv» is aporoxirnately 

19 

The reproducibili ty of the values of d^/dv and of the kinematic 

distr ibutions ( i . e . , for different seta of pseudo- random numbers) ha; 

been tested for severa l c a s e s ; the 

distribution) to within 10%. 

of some of the kinematic dist 

the d iscrepancies ! 

wou \-

given a r e rep-* 

y 25 bin popu I a 

independerv of the accuracy 

lg the extent of 

e distribui • symmetry 

m. 7 
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V. V I R T U A L C O M P T O N G R A P H S 

is of t h e h a d r o n i c i n t e r -

: h a n g a c.-;s l ave c a l c u l a t e d the 

ut ion of the v i r t u a l C o m p t o n g r a p h s for s c a t t e r i n g off p r o t o n s , a c c o r d i n g 

! e l ; the p r o t o n is t r e a t e d as though i t w e r e . 

ile f o rm fac to r G[(p - p ) " ] [ s e e Eq . (2 .7)1 is 

men t . A p a r t f r o m the f a c t o r G, the two v i r t u a l 

11 
;.-,ii r a t i o n s 

( 5 . 1) 

•se dia; i d e n t i c a l a j a n d lb) of F i g . 1 (for Z' - b a r e 

oton). c u m s t a n c c m a k e s it p a s - I c u l a t e the s i n g l y - d i f f e r e n t i a l 

o s s s e c t i o n for v i r t u a l C o m p t o n s c a t t e r i n g by the a a m e m e t h o d as tha t u s e d in 

c t i o n s II and III (and t h e A p p e n d i c e s ) , if one r e p l a c e s K by T in E q . (2 . I), 

ikes the s u b s t i t u t i o n s (5 . 1). and inc ludes the a p p r o p r i a t e f o r m f a c t o r . T h e 

l u s f o r m a t i o n of S e c t i o n IV i s r e p l a c e d by a m o r e a p p r o p r i a t e one : 

X = *! t 

3 
2 

4 3 

C" 2 
J G ( u , ' - v - t ) du , ' 

(5.2) 

where t and u . (i = 1, 2, 3) are defined as in Eq. (3.2) with the substitution* 

(5. 1) applied [thus t = ( k ^ k ) 2 . e t c . ] . The virtual Compton graphs will br 

found (see Section VI) to make a negligible contribution to the c ross section for 

the large v values of in teres t . 
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VI. R E S U L T S AND DISCUSSION 

We ha%'e c a l c u l a t e d (d~/dv) and i t s d i s t r i b u t i o n s in q and t h e l a b 

q u a n t i t i e s T . , c o s 0 . , k ., and Ak,.. , fo r s e v e r a l t y p e s of c r o s s s e c t i o n s 
1 I j . i | | i 

o of i n t e r e s t . - and - d e n o t e the c r o s s s e c t i o n s fo r the B e t h e - H e i t l e r 
p F e 

p r o c e s s [F ig . 1(a) - (d ) ] for e l a s t i c s c a t t e r i n g off a f r e e p r o t o n and c o h e r e n t 

s c a t t e r i n g off i r o n , r e s p e c t i v e l y . The c r o s s s e c t i o n s c o r r e s p o n d i n g to 

the two B e t h e - H e i t l e r g r a p h s which con t a in a t i m e l i k e p h o t o n of m a s s Jv 

[i. e. , g r a p h s (a) and (b) of F i g . I , which a r e c a l c u l a t e d by r e p l a c i n g K 
Q 

by T in Eq. (2. 1)] a r e d e n o t e d by o ' and n- ' . The c r o s s s e c t i o n fo r 
o p F e 

v i r t u a l C o m p t o n s c a t t e r i n g off a f r e e p r o t o n ( c a l c u l a t e d a c c o r d i n g to 

g r a p h s (b) and (c) of F i g . 2 , wi th the d ipole f o r m f a c t o r G [ ( p ' - p) ] 

i n c l u d e d in the m a t r i x e l e m e n t ) i s deno ted by g " . 
P 

In F i g . 3, da / d v and d,-j ' / d v a r e p l o t t e d v e r s u s v, t h e ( e " e ) 
P P 

m a s s s q i a r e d , fo r i n c i d e n t m u o n e n e r g i e s of 200 and 300 G e V . 

A s d i s c u s s e d in the I n t r o d u c t i o n , we a r e i n t e r e s t e d i n t h e u s e of 

k i n e m a t i c c u t s to i n c r e a s e the r a t i o I , 1 / 1 j ) (and s i m i l a r l y fo r 

Z = F e ) . It i s e f f i c ien t for t h e s e p u r p o s e s to m a k e s u c h a c u t in c o s 9 , . , • 
l . l a b 

w h e r e 0. , i s the l a b a n g l e of the outgoing m u o n r e l a t i v e to the i n c o m i n g 

b e a m . F o r r e a s o n s to be d i s c u s s e d bolow, t h e s o m e w h a t a r b i t r a r y c u t 

c o s 8, , , s 0."996 h a s b e e n c h o s e n fo r f u r t h e r s t u d y . We de f ine o a s 
1, l a b p , c 

t h a t p o r t i o n of 0 w h i c h a r i s e s f r o m a l l k i n e m a t i c c o n f i g u r a t i o n s s a t i s f y ­

ing c o s a, , . s. 0. 996; o ' . T_. • and aj. a r e de f ined mutatis 

" l . l a b p , c f e , c r e , c 

mutandis. 

23 

F o r e l e c t r o n p a i r m a s s e s of / v = 5, 10, and 15 G e V and i n c o m i n g 

m u o n e n e r g y E = 100, 2 0 0 , and 300 G e V , T a b l e I g i v e s ( l / Z ) ( d a / d v ) 

w h e r e a d e n o t e s t h e f ive t y p e s of c r o s s s e c t i o n s a t a_ . a • a „ • and 
p T e p F e 

2 
a " . T h e a v e r a g e v a l u e s of q and t h e l a b q u a n t i t i e s T , T , c o s 9 , 

p 1 £» A. 1 

c o s 6 , , . k , , k „ , , Ak | , , , and i k „ _ , a r e a l s o g i v e n . ( T h e s u b s c r i p t 
2 , 3 j . 1 j . 2 , 3 II1 IK' 3 

" 2 , 3 " i n d i c a t e s t h a t t h e e l e c t r o n and p o s i t r o n d i s t r i b u t i o n s h a v e b e e n 

a v e r a g e d t o g e t h e r ; t h i s i s r e a s o n a b l e s i n c e t h e s e d i s t r i b u t i o n s wou ld b e 

i d e n t i c a l in a n e x a c t c a l c u l a t i o n . ) F o r t h r e e of t h e (/v, E) p a i r s , T a b l e I 

a l s o g i v e s ( l / Z ) ( d c / d v ) and t h e a v e r a g e v a l u e s of t h e k i n e m a t i c q u a n t i t i e s 

fo r t h e c a s e of a • a , a _ , and T ' 
p , c p . c F e , c F e , c 

F o r t h e c a s e / v = 10 G e V , E = 300 G e V , F i g . 4 g i v e s ( in h i s t o g r a m 

f o r m ) t h e c o m p u t e d d i s t r i b u t i o n s i n T and T for e a c h of t h e s i n g l y -

d i f f e r e n t i a l c r o s s s e c t i o n s da / d v , d a ' / d v , d a / d v , and da ' / d v . 
p p p , c p , c 

F i g u r e 5 g i v e s t h e c o r r e s p o n d i n g d i s t r i b u t i o n s i n log ( 1 - c o s 8.) and 

i o g i n U - c o s 8 , , ) ; F i g . 6 , i n &k and &k , , ; and F i g . 7, in q . 
10 2 , 3 j , 1 i Z , 3 

We l i s t s e v e r a l r e s u l t s of t h e c a l c u l a t i o n s b e l o w . 

1. F o r t h e (/v, E) v a l u e s of T a b l e I, d a / d v i s a t l e a s t a n o r d e r of 
P 

m a g n i t u d e g r e a t e r t h a n ( l / 2 6 ) ( d a _ / d v ) [ and l i k e w i s e d a ' / d v > > ( 1 / 2 6 ) 
r e p 

(da ' / d v ) ] e x c e p t f a r f r o m t h r e s h o l d ( a t / v = 5 G e V . E > 200 G e v ) . 

2 . An e s s e n t i a l c h e c k on the c a l c u l a t i o n of d a ' / d v for Z = p and 

F e i s o b t a i n e d by c o m p a r i n g d a ' / d v w i th t h e t o t a l c r o s s s e c t i o n a ( B ) 

f o r p r o d u c t i o n of B b o s o n s of m a s s / v v ia p r o c e s s ( 1 . 4>. By c o m p a r i n g 
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the resu l t s of Sections II and III with the c ro s s section formulae of 

paper I, one finds 

a(B°) = ( 3 - v / a ) ( l + 2 m E / v ) " 1 (1 - 4 m 2 / v ) " 1 / 2 (da ' /dv) . (5.1) 
e e 

The numerical resul t s for d a ' / d v satisfy Eq. (5. 1) to within approxi­

mately 2%. 

3. In general , da /dv ^ 100(da' /dv) £ 104(da" /dv) . This can be 
P P P 

roughly understood in t e r m s of the propagator denominators . In 

da /dv, the "spacel ike" t e r m S [Eq. (2 .4 ) ] , with i ts overall factor of 

D = (k - k ) in the denominator, dominates the mat r ix element; while 

the ma t r ix element for d a ' /dv contains the denominator v instead. 
P 

Ignoring muon m a s s t e r m s , D i 2EAk,. , which typically is severa l 

GeV for do /dv (see Table I). Therefore one would crudely expect 

that (do / d v ) / ( d a ' /dv) a 0 ( v 2 / D 2 ) ^ O(103); in real i ty the rat io of 
P P 

c r o s s sections is c loser to 100. 

To see why the virtual Compton c r o s s section do" /dv is so small , 
P 

we consider the factors ar i s ing from the photon propagators and the 

hadronic form factor G(q ). For d o ' /dv these factors give v q" G (q ); 

- 2 - 2 2 2 
for do" /dv they give v D G (q ). Using the average values of these 

quanti t ies (obtained from Table I), one finds (da' /dv) / (d a " /dv) ~ 0(100). 
P P 

4. F o r the case of do /dv and doy /dv , the outgoing muon typically 

comes out near ly forward and has a modera te ly flat energy spectrum; 

while the e lectron and posi tron come out at l a rge angle* from the forward 

direction and have spectra which "are ctrongly peaked at small energies 

(See F igs . 4 and 5. ) The value of ( T , , ) is somewl.. -llnp 
5 i, i av 

in this respect , because of the highly skewed distribution. 

do /dv wi th /v = 10 GeV, E = 300 GeV) the mean t , , 
p 2 ,3 

median is st 85 GeV, 40% of the T distribution falls 

s imi lar situation occurs for other (/v, E) vaJ 

5. By way of contrast , d? ' /dv (and d 

very different from those abo 

slow and comes out at a I 

a re fast, have moderate ly flat spectra , arc 

angle (s; 5°). This is the situation whici 

e lectron pair production via proces s (I. 4), 

6. Because there is such a slight ovc i 

distr ibutions of da /dv and do '/dv [see Fig 
P P 

value of cos 9 , . called c ' , such that S 

> 50% of da ' / d v lies betow c ' . A suitable 
P 

based upon Fig. 5(a) and s imi la r distribution.; %t oth« 

is c ' = 0. 996 (for which IOS.Q 1 ' 1 - c 1 - -2 - 4 ) - For this cutoff 

of F igs . 4 - 7 indicates that the do /dv distributions are generally 
p. c 

s imi lar to those of do 7dv , while retaining some of the da /dv pea; 
P 

a r i se from propagator denominators . 
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:ause of the large qualitative differences between the dn / dv and 
"P 

P 

which a re hiph!' 

parable to th 

iat it is possible , by imposing the 

i by F igs . 4 - ?, to design exper iments 

jossible modifications in the time like-photon 

alues of v, the (e e. ) m a s s squared. The 

graphs can be made com-

e contribution, while the virtual Compton c r o s s 

-ed he re , 

j has been co- i l lustration, 
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A P P E N D I X A 

U s i n g the d e f i n i t i o n s of E q s . (2 . 5), ( 3 . 2) ff. , and ( 3 . 5), t h e do t p r o d u c t s 

of k, k , k . k , q, and p a r e c a l c u l a t e d a s f o l l o w s . We h a v e 

k . k j = | ( v + t - u 2 ) - m u
2 

k - q = u , 

k - p = - M k „ , , 
O . l a b 

klq = u l " i u2 

k 2 ' k 3 = m e " 2 V 

V q = ' \ * + I U2 + 1 U3 
1 1 1 

k 3 . q = " 2 t + 4 » 2 - 2 U
3 

q - p = - | t . (A. 1) 

In f r a m e " B " t h e p o l a r and a z i m u t h a l c o o r d i n a t e s a r e d e n o t e d 9 and 0 ; 
B B 

t h e z a x i s i s d e f i n e d t o l i e a long t h e 8 = 0 r a y , and t h e x and y a x e s s a t i s f y 
B 

(8 = , 0 D ) = ( - , 0) and ( - , - • ) , r e s p e c t i v e l y . By d e f i n i t i o n , k = q = 
D a • c c. c. y r i xrJ 

q „ = 0, and w e d e f i n e t h e s e n s e of 0„ s u c h tha t p „ 2 0. T h u s 
^yB B y B 

k- k , = k „ k , „ + k „ k - k „ k „ . (A. 2) 
3 x B 3 x B z B 3 z B OB 3 0 B 
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We h a v e 

4 0 B yv" 7 (*-i«2) 

q | 
B 2 J v 

1 / 6 

w h e r e 

t h u s 

and 

k - - H -

2 /v 

n = v + t - u + 2u 

z B ^ " I ^ O B ^ ^ I 

= ( k z - k 2 . m
2 ) 

\ O B zB u / 

B 

1/2 

c a n be c a l c u l a t e d . U s i n g 

k303 = 2 A 

(A. 3) 

(A. 4) 

(A. 5) 

and 
3zB **K (A. 6) 

one o b t a i n s 

1/2 

3B (A. 7) 
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Therefore 

k . k 3 = 

where 

^ 2 - m 2 v - ^ j 

C - 2 v u 1 + n ( t - | u 2 ) 

m u 
1/2 

cos 0. 3B 

(A. 8) 

(A. 9) 

The other dot products that depend upon 0 but not upon 0 , are 

k-k = - - n - k - k 

and 

k1.k2 = - * 1 + i u a - | « , . k - k 3 

k i - k 3 = i(v + t + u
3 ) - i u 2 + k'k

3 (A. 10) 

In frame "A" the angular coordinates are denoted 8 and * ; the 
A VA 

c, y, and z axes for frame "A" are defined in terms of 6 and t as 
A * A 

lescribed above (for frame "B"). By definition, p = k = k - 0 
*yA xA yA ' 

nd the sense of 0 is arbitrary. We have 

V P = k l x A P x A + k l*APzA " k10AP0A (A. 11) 
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where 

10A 

I z A 

l x A 

= (ui + m
u

2 -\v-v)//3 

2 ( B e ) 
1/2 

M-H 2 2 
- m v 

IzA 
COS 0 

1A 

with 

end 

Also 

P0A = ( M k 0 . U b - - H / / & 

• z A 

r x A 

M k 0 , U b ( t - U l ) - i t ( U l + m
u

2 ) 

1 2 2 \ 
*"! " 4 m

u * ) 
' 2 2 
M k„ , . t - Mk„ . . 
i O.lab 0, lab 

1/2 

M 

B = 2u 4 m - t 
1 u 

2 2 . 
e = u + m t 

* u 

(A. 12) 

(A. 131 

k 3 P = k J x B P x B + k 3 y B P y B + kJxB P«B ' kJ0B P OB 



jvhere 

Pon = (N! 

" z B 

y B 

n d k3\BV kXB a r e g i v e " 

The propagator denomii 

D = u_ 

D 

D, 
b 

D = - u + u . 
c 2 2 3 

Dd " i V S 

Using these resu l t s , it is straightforward to v 

b variables over which the kinematic distr ibutions a r e obtained. The 

aetic energies of the outgoing leptons a re 
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APPENDIX B 

each i 

quantities arc invariant uri' 

for tho a^imuthai angles 1 , , 5-„ i and i.A . 

, integration is trivial. Since all computed 

the mapping i - 2-r - S , • it is convenient to 

integrate over * only, and rm'ltipiy by two. 

The limits of the u integration arise from the condition 

|cos eJB! ' i (B. 1) 

B"(in which frame k - k = ~q). One obtains 

Eq. ( 

(i-#"V <B. 2) 

Similarly, one requires 

|co. 9 1 A | * 1 (B. 3) 

where 9 ^ _(q , k > in frame "A" (in which frame k = q). Therefore 

U 2- * U2 S U 2 + 
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where [see Eqs. (A. 13)] 

u 2 ± = t + u 1 + j ( v - m / ) ( u r t ) * (au^v-t) ^ ^ ^ ^ • l V 

1/2 

' / • 
(B.4) 

The domain of u is given by 

"l- S U l S UH 

where u is the value at which the physical u region vanishes, 

V » 1 " + J * • m A . (B. 5) 

and where u corresponds to the nucleon or nucleus coming out forward in the 

lab frame. 

1+ ' 'lab t + (t/2M) V l » b t / 2 M B. 6) 

Requiring u. £ u , yields the kinematic limits on t: 

where t are the roots of 
± 

t s t i t 

»t + bt + c = 0 

with 

a = i + V j « b + ^ 
4 2M 2 

4M 

= i - T + 1 ) ( | - - A ) - P l u h 

" (iv + m
u

A ) 2 • (B.8) 
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The limits on u . u . and t are similar to the corresponding limits in 

B production (Paper I), since the mass (A) of the virtual timelike photon 

[in diagrams (a) and lb) of Fig. 1] is fixed. This renders the kinematics similar 

to that for the case of three outgoing particles (nucleon or nucleus, lepton,and virtual 

photon), if one is not specifically interested in the k and k distributions. 

The threshold beam energy for given v is 

(k0..ab)- * i 5 - ( i V + m / V ) + m
u

 + /V • (B '9) 

It is sometimes useful (see Section VI) to be able to integrate over only 

that portion cf kinematically available phase space which satisfies an arbitrary 

constraint such as 

cos 9 , , * c ' . (B. 10) 
1. lab 

An efficient means of doing this, which avoids calculating the integrand where 

it i s unnecessary, is given below for the particular constraint (B. 10). Cuts in 

other variables can be treated similarly. 

Equations (A. 11) - ( A . 13) and (A. 16) - (A. 17) imply that 

cos 9 , , , is of the form 
1, lab 

C 1 + C 2 C ° ' »1A 
CM " i . i . b ' 7 : r—TUT 

(C3 + C4 c o s « I A + C j C O S 4 j A J (B. 11) 
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where the c. (i = 1 5) are independent of « and * , „ . Therefore 

a H 9 l , l a b ) 
a (cos - 1 A ) 

(B. 12) 

if and only if 
C 1 C 4 " 2 c 2 C 3 

C ° g * l A = c ^ - Z ^ c - «B-13> 

For each choice of t, u . u , and u_, the values of cos 5 . . . obtained by setting 
i 4. 3 l , l a o 

cos i equal to + 1, - 1, and the RHS of Eq. (B. 13) [if the absolute value of 

(B. 13) is < lj are each calculated using (B. 11). If each of the resulting values of 

cos 9 , . exceeds the cutoff c ' of (B. 10), than no possible e . can satisfy 

(B. 10), and the entire phase space region corresponding to the given values of t 

and v . must fall outside the cut. If, on the other hand, some *. satisfies 

(B. 10), then the calculation of L and p L p proceeds as usual, and each 
JO 0 g t r T 

pseudo-randomly selected a is tested separately for the criterion (B. 10). 
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TABLE CAPTION 

lion per proton (l/Z)(da/dv) and 

quantities, for process (1.1) with 

intity v denotes the (e e ) pair 

ss sections fj are c 

7_ arc calculated using the four Bethe-
r e 

' and n ' refer to the two 
' Fe 

Fig. 1(a) and (b)]; 

orresponding 

section ( t ig . 2). 

FIGURE CAPTIONS 

Fig. 1. Bethe-Heitler graphs for process (1.1). Tht virtual photon 

carrying momentum q can be attached at any of positions 

(a) - (d). In diagrams (a) and (b), the unlabeled virtual photon 

i s timelike; in (cj and (d), it is spacelike. 

Fig. 2. Virtual Compton graph for process (1. 1). (a) General structure. 

(b) and (c) Graphs under the assumption that Z - bare proton. 

Fig. 3. Distribution in (e e ) mass squared, v , for process (1. 1) with 

Z = p and E = 200 and 300 GeV, for the four Bethe-Heitler (BH) 

graphs ( ) and for the two "timelike" BH graph* alone ( 

Fig. 4. Normalized kinematic distributions in lab kinetic energy 

process (1. 1) with Z = p. / v = 10 GeV, and E = 300 GeV, for 

the four Bethe-Heitler (BH) graphs) ) and for the two "tirrV;-

like" BH graphs alone ( ). [The quantity v denotes \ 

(e e ) pair mass squared, j (a) T distribution with no kinematic 

cut imposed; (b) T , with the cut cos 8. * 0 . 996; (c) T, , no 

cut; (d) T , with same cut. 

Fig. 5. Same as Fig. 4, but for distributions in the lab-frame variables, 

log 1 0 (1 - cos 8j) and log 1 0 (1 - cos 9^ }). 

Fig. 6. Same as Fig. 4, but for distributions in the lab transverse 

momenta k , aud k , , . 
i l A 2 , 3 

Fig. 7. Same as Fig. 4, but for distributions in q . 



TABLE I 

/ v 

(GeV) 

5 

5 

E 

(G .V ) 

100 

200 

Type of 
o 

o 
p 

° F . 
o ' 
p 

° F . 
o * 
P 

0 
p 

°Fe 
a ' 
p 

V. 
m 

a 
P 

Vc 
<Ve.c 
o' 
p .c 

^ . . c 

I do 
Z dv 

3.85 

0 .0686 

0 .0576 

0.00180 

0.000270 

14. 1 

6 .00 

0. 159 

0. 130 

0.000422 

0. 112 

0 .0741 

0.0793 

0.0454 

T l 
(GeV) 

39. 1 

18. 0 

8. 1 

3.8 

60 .6 

100.7 

43 .9 

17.0 

9. 1 

155.4 

4 . 2 

2 .0 

3. 3 

1.4 

T 
2,3 

(GeV) 

30. 3 

41 ,0 

45 .8 

48. 1 

19.4 

49 .6 

78 .0 

91 .4 

95 .4 

22 .0 

97 .8 

98 .9 

98 .2 

99 .2 

co» 9 

0.9985 

0.9986 

0.9304 

0.9558 

0.9996 

0.9994 

0.9996 

0.9549 

0. 9904 

0. 9999 

0.9327 

0.9798 

0. 9096 

0 .9731 

C O , e 2 , 3 

0.769 

0 .702 

0.987 

0 .989 

0 . 9 4 1 

0.819 

0 . 7 6 1 

0. 996 

0.996 

0.935 

0 .971 

0 .900 

0.997 

0.997 

(GeV) 

0 .38 

0 .26 

0 .64 

0.27 

0. 58 

0 . 4 1 

0. 30 

0 .76 

0 .32 

0 . 6 1 

0 . 6 1 

0.27 

0 .55 

0 .22 

k , 2 . 3 
(GeV) 

0. 89 

0 .72 

1.90 

1.85 

1.92 

0 .84 

0 .68 

1.93 

1.86 

1.92 

1.64 

1.38 

1.90 

1.86 

(GeV) 

0.0058 

0.0046 

0.0573 

0.0203 

0.0083 

0 .0031 

0.0025 

0.0443 

0.0115 

0. 0044 

0.0623 

0 .0201 

0.0675 

0.0193 

i k i ; 2 . 3 
(GeV) 

0. 120 

0 .079 

0 .072 

0 .066 

0. 195 

0 .083 

0 .042 

0 .038 

0.033 

0. 186 

0.033 

0 .032 

0 .033 

0 .032 

q 

(GeV2 ) 

0. 322 

0 .051 

0. 246 

0.048 

0.899 

0.225 

0.016 

0. 160 

0 .014 

0. 869 

0. 161 

0 .016 

0. 168 

0 .016 

5 

10 

10 

300 

100* 

200 

a 
P 

°Fe 
a' 
P 

° F . 
a 
P 

a 
P 

°P 
0 

% 

°p 

°Fe 
/ 

" P 

° F . 
0 

a 
P 

a 
p .c 

° F . . c 

' p . c 

° F . . c 

25 .4 

28. 5 

0 .234 

0. 506 

0.000496 

0.00152 

2. 04 x 10" 5 

3.83X 10" V 

0.0669 

5.91X 1 0 " * 

0.000996 

1. 55 x 10 

2. 68 x 1 0 " 6 

0.00180 

3. 08 x 1 0 " 6 

0.000622 

9. 71 x 1 0 " 7 

168.5 

86. 1 

2 f . 4 

15.8 

252.6 

11.2 

4 . 7 

15.4 

51 .4 

23. 1 

11.4 

. 4 . 7 

77 .6 

6. 1 

3. 3 

4 . 2 

1.8 

65 .6 

106. 9 

136.7 

142. 1 

23 .4 

4 3 . 9 

47 .2 

41 .6 

74. 1 

8 8 . 4 

94. 1 

97 .6 

60 .8 

96. 8 

98. 3 

97.7 

99. 1 

0.9996 

0.9998 

0.9663 

0.9927 

1.0000 

0.9974 

0.9707 

0.9972 

0.9988 

0.9983 

0.9520 

0.9645 

0.9995 

0. 9629 

0.9676 

0.9175 

0.9234 

0.839 

0.799 

0.998 

0.998 

0.940 

0 . 6 8 1 

0.963 

0.957 

0 .737 

0.664 

0. 988 

0 .989 

0 .971 

0.898 

0.736 

0.989 

0.989 

0 .43 

0. 35 

0.83 

0 .39 

0 .62 

0. 29 

0. 50 

0. 39 

0 .47 

0. 32 

0. 82 

0. 34 

0 .73 

0 . 8 1 

0.43 

0 .70 

0 .30 

0 .83 

0 .68 

1.94 

1.87 

1.95 

1.68 

3.67 

3.70 

1. 51 

1. 31 

3.73 

3.69 

3.74 

2. 56 

2.U1 

3 .71 

3.66 

0 .0021 

0.0019 

0.0373 

0.0107 

0.0030 

0.0088 

0.C428 

0.0117 

0.0069 

0.0057 

0 .0611 

0.0259 

0.0105 

0.0667 

0.0337 

0.0820 

0.0373 

0.069 

0.032 

0 .026 

0.023 

0. 181 

0. 289 

0.267 

0. 307 

0. 178 

0. 144 

0. 136 

0. 129 

0.226 

0. 131 

0. 128 

0. 129 

0. 127 

0. 189 

0 .011 

0. 133 

0.010 

0 .820 

1. 512 

1. 397 

2. 376 

0. 562 

0. 128 

0 .464 

0. 120 

1.250 

0.453 

0. 122 

0 .464 

0. 124 

<* 



10 

15 

15 

300 

200* 

300 

% 

°Fe 

°Fe 
0 
p 

°p.c 

° F e . c 
0 p. C 

"Ye, c 

a 
P 

CTP 
m 

°P 

°P 

°Fe 

°; 
# 

0 
P 

0.215 

0. 001Z5 

0.00285 

2. 73x 10"5 

4. 32 x 10' 

0.00290 

2. 93 x 10"5 

0.00159 

1. 54 X 10" 5 

0.000146 

1. 8 7 x l 0 " 6 

2. 20 X 10"8 

0.00332 

2 .43X10" 7 

4 . 9 2 X 1 0 ' 5 

6 . 8 1 X 1 0 ' 9 

1.21X10"7 

101.6 

54. 1 

18.". 

9.8 

158.9 

5.8 

3. 3 

4 . 2 

2 .0 

18.4 

7 .4 

25.3 

51.5 

18.9 

13.0 

4 .3 

75. 1 

99.0 

122.9 

140.7 

145. 1 

70 .2 

147.0 

148.3 

147.8 

149.0 

90 .2 

95.8 

86.5 

124.0 

140.5 

143.2 

147.8 

122.0 

0.9991 

C.9V88 

0.9460 

0.9534 

0.9998 

0.9420 

0.9515 

0.9068 

0.9197 

0. 9984 

0. 9827 

0.9985 

0.9990 

0.9981 

0.9737 

0.9595 

0. 9994 

0.774 

0.726 

0.994 

0.994 

0.979 

0.937 

0.878 

0.994 

0.994 

0.688 

0.978 

0.971 

0.721 

0.634 

0.989 

0.989 

0.982 

0. 55 

0.42 

0. 96 

0.49 

0.88 

0. 80 

0 .45 

0.70 

0. 34 

0.33 

0. 59 

0.45 

0 .49 

0 .29 

0.88 

0 .31 

0 .73 

1.46 

1.30 

3.76 

3.71 

3.77 

2.87 

2. 58 

3.73 

3.69 

2.23 

5.53 

5.54 

2. 11 

1.88 

5.58 

5.53 

5.58 

0.0054 

0.0049 

0.0596 

0.0300 

0.0082 

0.0737 

0.0395 

0.0835 

0.0409 

0.0075 

0.0388 

0. 0098 

0.0072 

0.0055 

0.0557 

0. 0227 

0.0104 

0. 140 

0. 104 

0.092 

0.087 

0. 206 

0.086 

0.085 

0.086 

0.084 

0. 315 

0.295 

0.330 

0.232 

0.201 

0. 199 

0. 191 

0.262 

0.407 

0. 083 

0. 318 

0.080 

1.043 

0. 314 

0.080 

0. 319 

0.081 

2.008 

1.831 

3.046 

0.910 

0.203 

0.790 

0.202 

1.616 

For thegeVv and E, the calculated o_ and o ' a r e *ero because of the cutoff factor in Eq. (I. 12). v Fe Fe 
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